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Abstract—We present a method to solve a kind of integral
equations (we call it the integral kernel expansion method),
and apply it to an analysis of excitation of magnetostatic sur-
face-wave/magnetostatic backward-volume-wave modes in a
magnetized yttrium–iron–garnet film. The Fourier integral of a
normal component of magnetic flux density is derived in terms of
an unknown current density flowing in a microstrip transducer.
The integral kernel is expanded into a series of the Legendre
polynomials and expansion of the unknown current density in
terms of appropriate functions reduces the Fourier integral to
a system of linear equations with unknown coefficients. Deter-
mination of the unknown coefficients allows us to estimate the
power of magnetostatic waves, which characterizes the excitation.
It is found that our numerical method is superior to the previous
conventional method based on an assumed current density. In
order to verify the validity of our method, we compare our results
with the corresponding experiments, and we have found good
agreement between the two.

Index Terms—Integral equation, magnetostatic wave (MSW).

I. INTRODUCTION

I N THIS PAPER, we present a method to solve a kind of in-
tegral equation, which we call the integral kernel expansion

method. As one of the applications of this method, we analyze
the excitation of magnetostatic surface-wave (MSSW)/magne-
tostatic backward-volume-wave (MSBVW) modes in a magne-
tized yttrium–iron–garnet (YIG) film.

The integral kernel expansion method, which has been devel-
oped by our group [1]–[3], is appropriate in solving the mixed
boundary-value problems, in which the field is formally ex-
pressed in terms of an integral transform including an unknown
quantity at some parts of the boundary and, on the other hand,
known at the remaining parts. Therefore, we obtain the inte-
gral-transform equation that the unknown quantity must satisfy.
The integral kernel is expanded into a series of orthogonal poly-
nomials over the parts of the boundary where the field is known.
We then expand the unknown field into a series of proper func-
tions, which reduces the integral equation to a system of linear
equations with unknown coefficients.
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The purpose of this paper is to apply our method to the
analysis of the excitation of MSSWs in the YIG film magnetized
obliquely. Magnetostatic waves (MSWs), which propagate in a
magnetized YIG film, have potential possibilities of application
to signal processing in the microwave band [4]–[6]. In a
magnetized YIG film in the plane, if the bias magnetic field
is perpendicular to the wave vector of MSW, then the MSSW
propagates, while if the magnetic field is parallel to the wave
vector, the MSBVW does. For the case that the magnetic field
is neither perpendicular, nor parallel, in other words, in an
obliquely magnetized YIG film, both MSSW and MSBVW
modes propagate, which is called the MSSW/MSBVW mode,
and the characteristics of such an MSSW/MSBVW mode
continuously changes depending on the angle of magnetization
[4], [7], [8].

Conventionally, the MSW excitation was calculated under
the assumption that the current density distribution flowing
in transducers was of uniform magnitude over the width of
the transducers [9], [10]. However, this conventional method
cannot be used to obtain a good approximation for any case.

The useful method to analyze exactly the excitation of MSWs
is to solve the current density in transducers by means of numer-
ical analysis methods. Some attempts in particular cases were
made by several researchers [11], [12]. The advantages of the
integral kernel expansion method are that we can formulate the
MSW excitation problem elegantly, and that we can solve them
formally for wide cases.

In this paper, we will analyze the excitation by a microstrip
transducer on the in-plane and obliquely magnetized YIG by let-
ting the current density be an unknown function and numerically
solving it by means of the integral kernel expansion method. In
order to verify the validity of the present method, we will then
compare our numerical results with the experimental ones.

II. THEORETICAL ANALYSIS

A. Formulation of the Problem

We consider the geometrical configuration of the present
problem, as shown in Fig. 1, the upper panel of which is the top
view and the lower one is the cross-sectional view.

The metal strip having the width and the infinitesimal
thickness is constructed on a YIG film with thickness . The
metal plane exists at as the ground conductor of the
microstrip transducer. The layer configuration goes infinitely
along - and -directions, and the field is assumed to be
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(a)

(b)

Fig. 1. Configuration for analysis.

Fig. 2. MSW band characteristics changing the angle �.

independent of or . The external direct magnetic
field is applied in the direction making an angle with the

-axis, and then the MSW propagates in the -direction,
as shown in Fig. 1, and also some examples of the potential
profiles of both modes are drawn in Fig. 1(b). In this case,
the following MSW modes can propagate depending on :

1) MSSW propagates for the magnetization perpendicular to
the wave vector of MSW ( );

2) MSBVW, for the magnetization parallel to the wave
vector ( );

3) MSSW/MSBVW, which propagates for the oblique mag-
netization of the YIG film ( ).

Fig. 2 shows the dependence of the frequency band of the
MSSW/MSBVW. The ordinate is the normalized frequency

, where , , and are the angular wave fre-
quency, gyromagnetic ratio, and saturation magnetization of the
YIG, respectively, and the abscissa is the angle of the direct
magnetic field. The magnitude of the applied magnetic field
is set as . The lower cutoff frequency of
the MSBVW is given by (the solid curve
in Fig. 2), and decreases with the increase of . The dotted line
indicates the upper cutoff frequency of the MSBVW and also
the lower cutoff frequency of the MSSW, which are equal to

. The upper cutoff frequency of the MSSW is
given by

(the broken curve), which also decreases, and merge into the
lower cutoff at the , which is the called the
critical angle of the MSSW.

From the configuration, a pair of Fourier transforms between
the space and wavenumber domains is defined as follows:

(1)

(2)

It is assumed that magnetostatic approximation
is valid and that the time factor is . The permeability
tensor of in-plane magnetized YIGs is given by

(3)

where

With the use of the usual boundary conditions that the tangen-
tial component of the magnetic field and the normal component
of magnetic flux density are continuous, we can obtain the rela-
tion between the current density flowing in the metal strip
and the magnetic flux density on the -plane, in the
wavenumber domain

(4)

where

(5)

(6)

(7)

and . It is noted that the function
has a pole in and , respectively.
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Taking the inverse Fourier transform and considering that
in the metal strip region ( ) lead to

the following equation:

(8)

This Fourier integral contains the unknown current density
, and we can solve (8) by using the integral kernel

expansion method.

B. Integral Kernel Expansion Method

First, the integral kernel of (8), , is expanded into a se-
ries of the Legendre polynomials over the interval

(9)

The expansion coefficients can be determined as fol-
lows. If we now multiply both sides of the above equation by

, integrate over to , and invoke the orthogonality
of the Legendre polynomials, we then obtain

(10)

by changing the variables

(11)

The normalization integral of the Legendre polynomials is equal
to , and the left-hand side can be rewritten in terms
of the Rodrigues’ formula [13]:

(12)

Integrating times by parts, we obtain

...

(13)

where and are the cylindrical and spherical Bessel
functions, respectively, and we used the Poisson’s integral for

the Bessel function at the last of the above arrangement [14].
Consequently, we obtain

(14)

Substituting (14) into (8) and invoking orthogonality of the
Legendre polynomials, we can obtain

(15)

Next, we expand the unknown function into a series of
orthogonal polynomials with unknown coefficients

(16)

where

and is the Chebyshev polynomial and
’s are the unknown coefficients to be determined. The

Fourier transform of (16) is given by

(17)

Substituting (17) into (15), we can reduce the Fourier integral
containing the unknown function into linear equations with re-
spect to the unknown coefficients

...
...

...
...

(18)

where

(19)

which can be calculated numerically, and we can then determine
the coefficients ’s to obtain the current density in (16) and
(17).

The major difference from the spectral-domain method [15],
[16] and the advantages of this method are the flexibility to
choose the expansion functions of both the integral kernel and
solution function, and the rapid convergence of the solution. We
can choose the expansion function of the solution taking into
account the physical condition for rapid convergence, which, as
well as the function in (8), limits a little the choice of the
expansion function of the integral kernel, as noted below. How-
ever, the convergence of the integral kernel expansion is quickly
obtained, e.g., in (14) for , the expansion converges at

, and if , it converges at .
It is noted that when adopting the integral kernel expansion

method, the choice of the polynomials expanding the integral
kernel is necessarily limited by the function expanding the so-
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lution because the integrals corresponding to (19) have to be
bounded for any combination of and . The integrand of
(19) decreases on the order of so that the integrals are
bounded. If we expand the integral kernel in terms of the Cheby-
shev polynomials , the expansion would be given by

(20)

and the resulting integrals ’s would not converge at finite
values for a particular combination of and because the in-
tegrand decreases on the order of .

C. Numerical Calculation of

Calculation of the infinite integrals of (19) is not straight-
forward because the integrands oscillate and also have pole
singularities. In this section, we describe the techniques to
overcome these difficulties.

Consider the integral over the positive given by

(21)

As , the function approaches exponentially to
the constant as follows:

(22)

Thus, we separate the integral into two parts as follows:

(23)

can be deformed as follows:

(24)

where

(25)

(26)

It is found here that the integrand of the first term of (23)
vanishes exponentially and the convergence of the numerical
computation can be obtained easily.

We still have another difficulty, which is the pole singulari-
ties, as we mentioned before. Here, we explain how to process
them in the computation. The preliminary definitions are intro-
duced for convenience of notation as follows:

(27)

(28)

In order to evaluate the contribution of the poles of ,
we subtract the singularities from the integrand and add the
compensating term. Letting the pole , we have

(29)

The compensating term, or the second term of (29), can be eval-
uated by the Cauchy principal value of the integral and half the
residue, i.e.,

(30)

where stands for the principal value of the integral, and the
second term has the minus sign because, with the loss of the
medium, the pole would be located below the real axis in
the complex -plane. The principal value of the integral can be
estimated as follows:

(31)

where is the exponential integral function.
The second term of (23) can be calculated analytically, and

the result is given by

(32)

Note that the result is identically equal to zero when
or is positive and even.

It is noted that the integration over the negative half-infinite
interval can be done in a similar manner.

D. Derivation of Equations for Comparison With Experiments

We can observe the excitation of MSWs as the loss of trans-
mission lines and, in the present problem, we measure the
of the scattering matrix of the microstrip line in Fig. 1. In this
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section, we derive the equations for the sake of comparison with
experimental data.

By using the Poynting vector, the average power flow per unit
length along with the -direction is given by

(33)

where the sign represents the -direction of the power flow,
respectively, and

(34)

(35)

(36)

(37)

The total current is obtained by integrating (16) directly over
the metal strip, i.e.,

(38)

Thus, the radiation resistance of the transducer is given by

(39)

and the radiation reactance is obtained by taking the Hilbert
transform of the radiation resistance

(40)

Finally, assuming that the loss of the transmission line is neg-
ligible, we obtain the following attenuation constant :

(41)
where and and , , , and are the
line capacitance, line inductance, characteristic impedance, and
propagation constant of the transducer, respectively.

III. NUMERICAL AND EXPERIMENTAL RESULTS

First, we calculate the insertion loss of the microstrip
transducer, which is regarded as the energy transformed into

Fig. 3. Numerical results on the frequency dependence of jS j for � = 0 .
The results by the present method are denoted by a solid line and those by the
conventional method are denoted by a dotted line.

Fig. 4. Same numerical results as Fig. 3, but for the case of � = 20 .

MSSWs. Figs. 3 and 4 show the numerical results estimated by
the present method (as denoted by the solid lines) and by the
conventional ones, which are based on the following assumed
current distributions .

1) is constant in the strip, i.e.,

(42)

(43)

and the results are denoted by dotted lines.
2) , whose field singularities at both edges of the metal

strip are added [17], i.e.,

(44)

(45)

with the results denoted by circles. Note that the assumed
current distribution 2 corresponds to the present method
only with the term of the zeroth order ( ).

These are calculated for the case of (for which the
upper cutoff frequency of the MSSW is 5.22 GHz) and
(5.08 GHz), respectively. The parameters used in the calcula-
tions are m, m, m,

kA/m, kA/m, and the length of the transducer
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Fig. 5. Convergence of the numerical results.

is 8 mm. We truncate the expansion with respect to in (17) by
ten terms and to in (14) by twice .

From these figures, we can observe the considerable differ-
ences between the results computed by the present method and
by both of the conventional methods over the frequencies of our
interest.

Second, we show the dependences of numerical convergence
on the number of expansion terms with frequency as a param-
eter in Fig. 5 in order to examine the convergence of computing
results because we have to truncate the expansion of (14) and
(17) by the finite terms for carrying out numerical calculation.
It is noted that in the abscissa means the expansion of
the unknown function (16) consists of two terms ( and

). All data are for the case of . It is seen that we have
convergence with the increase in and we can see that it is suf-
ficient for convergence to truncate the expansion by approxi-
mately seven terms over almost all of the frequency range, but
at the upper frequencies, the convergence is relatively slow. This
is because the approximate solution expanded into the finite se-
ries of the Bessel functions approaches the exact solution from
low frequencies and the terms with the Bessel functions of the
higher order contribute to it at upper frequencies. However, al-
most over the main range of the MSSW band, the convergence
is obtained by the expansion of a few terms.

Experiments were performed to verify the validity of the
present theory. Using a vector network analyzer (HP8720C),
we measured the of the transducer or the insertion loss.

Fig. 6 shows the schema of the device-under-test. The YIG
used in this experiment is 20- m thick, 24-mm wide, and
10-mm long. Both edges of the YIG are rough by rasping to
prevent the straight-edge resonance. We construct the metal
strip directly on the YIG surface by evaporating aluminum. The
dimensions of the metal strip is shown in Fig. 6(b): 1-mm-wide
and 1-mm-long parts in the both sides for transition between
SMA connectors and the transducer, and 125- m-wide center
part for the transducer, i.e., m in Fig. 1. The distance
between the metal strip and ground plane is approximately
500 m, for which the characteristic impedance and effective
dielectric constant of this transmission line are approximately

and 6.20, respectively, if the YIG is regarded just as a

(a)

(b)

Fig. 6. Configuration of the device-under-test.

Fig. 7. Frequency dependence of S of the test device for various values of
the angle of the magnetic field (�).

dielectric. The YIG film is directly mounted on the aluminum
ground plane, which is rotatable on the aluminum support and
can be fixed at any angles. The aluminum support is fixed by
the equipment applying a direct magnetic field.

Fig. 7 shows the experimental results of the frequency de-
pendence of of the transducer when we changed the angle
of the biased magnetic field with a constant magnitude of
77.6 kA/m ( Oe). The frequency where the MSSW ex-
ists for is found to range from 4.59 to 5.22 GHz, and
the corresponding frequency band for the MSBVW ( )
propagation is in a range from 2.73 to 4.59 GHz. It is known that
with an increase in , the upper limit of the MSSW band shows
a decrease and the lower limit of the MSBVW band becomes
lower [4], [7], [8], and such a tendency can actually be found in
Fig. 7.

In Figs. 8–10, we plot the experimental and numerical results
by the present method for the case of , 20 , and 30 , and
also the results by the conventional method for comparison. All
three of these figures clearly suggest that the frequency depen-
dences by the present method exhibit the behaviors much closer
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Fig. 8. Comparison of the experimental results (denoted by dots) with
the numerical computations in the case of � = 0 . The full line refers to
the numerical results by the present method. We also plot the ones by the
conventional method (dotted line) for comparison.

Fig. 9. Same as Fig. 8, but for the case of � = 20 .

Fig. 10. Same as Fig. 8, but for the case of � = 30 .

to the experimental frequency dependences than those by the
conventional analysis method.

Even though the present method has yielded considerably
better agreement with the experimental result than the previous
conventional result, we still notice a significant discrepancy
between the two, which should be seriously discussed. In the
frequency band of the MSSW, the experimental data are seen
from these figures to indicate a greater loss of approximately
1 dB than the numerical results by the present method. This
difference can be accounted for by the undesirable return loss at
the transition between the coaxial and microstrip line, radiation
into free space, and/or conductive loss of the metal strip. It is
also found from these figures that extra excitation exists out
of the MSSW band. It seems to be due to the inhomogeneity
of the applied magnetic field and the demagnetization in the
fringes of the YIG film.

Fig. 11. Calculated frequency characteristics of the MSSW excitation
changing the ratio of strip width to YIG thickness 2w=d. The data are
calculated by the integral kernel expansion method.

Fig. 12. Same as Fig. 11, but calculated by the conventional method adopting
the uniform current distribution. The parameters used for computation are the
same as in Fig. 11.

Here, we shall consider the dependence of the MSSW exci-
tation on the microstrip geometry by means of the developed
method in this study. We change the ratio of strip width to YIG
thickness as a parameter, while the others are fixed, as
shown in Fig. 11. The necessary values for the computation are
written in the graph. We can see that, as the ratio increases,
the excitation in the lower frequency range becomes stronger,
while the one in the higher range does weaker gradually.

We also show the calculated results by the conventional
method to use the uniform current distribution for reference in
Fig. 12. The same tendency of dependence on the ratio
is as shown in the previous figure, but the difference from the
present method is large in the high-frequency range when the
ratio is low, i.e., the strip is narrow. In [10], it is mentioned that
the agreement between the calculation with the uniform current
and the experiment is poor for the narrow strip. Consequently,
although the uniform current approximation can be applicable
for wide strip transducers, it is necessary to use our developed
method for excitation analyses for narrow strip transducers.
Moreover, with taking into account that narrow strip trans-
ducers would be important for MSW devices to require broad
excitation, we can conclude that the present method would be
highly useful and should be used in the analysis.
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IV. CONCLUSION

We have presented the integral kernel expansion method,
which is an integral-equation solver, as the application to anal-
ysis of the MSSW excitation in the in-plane magnetized YIG
film. This method allows us to formulate the present problem
elegantly and solve it successively. The agreement of the
numerical results by the present method with the corresponding
experiment is generally good, while there is still a significant
discrepancy between the conventional ones and the experiment.
It has been evident that the integral kernel expansion method
used in this paper is appropriate for the analyses of MSW
excitation problems.
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