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Abstract—We present a method to solve a kind of integral
equations (we call it the integral kernel expansion method),
and apply it to an analysis of excitation of magnetostatic sur-
face-wave/magnetostatic backward-volume-wave modes in a
magnetized yttrium—iron—garnet film. The Fourier integral of a
normal component of magnetic flux density is derived in terms of
an unknown current density flowing in a microstrip transducer.
The integral kernel is expanded into a series of the Legendre
polynomials and expansion of the unknown current density in
terms of appropriate functions reduces the Fourier integral to
a system of linear equations with unknown coefficients. Deter-
mination of the unknown coefficients allows us to estimate the
power of magnetostatic waves, which characterizes the excitation.
It is found that our numerical method is superior to the previous
conventional method based on an assumed current density. In
order to verify the validity of our method, we compare our results
with the corresponding experiments, and we have found good
agreement between the two.

Index Terms—Integral equation, magnetostatic wave (M SW).

I. INTRODUCTION

N THIS PAPER, we present a method to solve akind of in-

tegral equation, which we call the integral kernel expansion
method. As one of the applications of this method, we analyze
the excitation of magnetostatic surface-wave (M SSW)/magne-
tostatic backward-volume-wave (M SBVW) modes in a magne-
tized yttrium—ron—garnet (Y1G) film.

Theintegral kernel expansion method, which has been devel -
oped by our group [1]-{3], is appropriate in solving the mixed
boundary-value problems, in which the field is formally ex-
pressed in terms of an integral transform including an unknown
guantity at some parts of the boundary and, on the other hand,
known at the remaining parts. Therefore, we obtain the inte-
gral-transform equation that the unknown quantity must satisfy.
Theintegral kernel isexpanded into a series of orthogonal poly-
nomials over the parts of the boundary wherethefield isknown.
We then expand the unknown field into a series of proper func-
tions, which reduces the integral equation to a system of linear
equations with unknown coefficients.
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The purpose of this paper is to apply our method to the
analysisof theexcitation of MSSWsinthe Y 1G film magnetized
obliquely. Magnetostatic waves (M SWSs), which propagate in a
magnetized Y I G film, have potential possibilities of application
to signal processing in the microwave band [4]-{6]. In a
magnetized YI1G film in the plane, if the bias magnetic field
is perpendicular to the wave vector of MSW, then the MSSW
propagates, while if the magnetic field is parallel to the wave
vector, the MSBVW does. For the case that the magnetic field
is neither perpendicular, nor parallel, in other words, in an
obliquely magnetized YIG film, both MSSW and MSBVW
modes propagate, which is called the MSSW/MSBVW mode,
and the characteristics of such an MSSW/MSBVW mode
continuously changes depending on the angle of magnetization
[41. [71, [8]-

Conventionally, the MSW excitation was calculated under
the assumption that the current density distribution flowing
in transducers was of uniform magnitude over the width of
the transducers [9], [10]. However, this conventional method
cannot be used to obtain a good approximation for any case.

The useful method to analyze exactly the excitation of MSWs
isto solvethe current density in transducers by means of numer-
ical analysis methods. Some attempts in particular cases were
made by several researchers [11], [12]. The advantages of the
integral kernel expansion method are that we can formulate the
MSW excitation problem elegantly, and that we can solve them
formally for wide cases.

In this paper, we will analyze the excitation by a microstrip
transducer onthein-planeand obliquely magnetized Y 1G by let-
ting the current density be an unknown functionand numerically
solving it by means of the integral kernel expansion method. In
order to verify the validity of the present method, we will then
compare our numerical results with the experimental ones.

Il. THEORETICAL ANALYSIS
A. Formulation of the Problem

We consider the geometrical configuration of the present
problem, as shown in Fig. 1, the upper panel of whichisthetop
view and the lower one is the cross-sectional view.

The metal strip having the width 2w and the infinitesimal
thickness is constructed on a YIG film with thickness d. The
metal plane existsat 4y = —d— h asthe ground conductor of the
microstrip transducer. The layer configuration goes infinitely
along y- and z-directions, and the field is assumed to be
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Fig. 2. MSW band characteristics changing the angle 6.

independent of z or /92 = 0. The external direct magnetic
field is applied in the direction making an angle ¢ with the
z-axis, and then the MSW propagates in the +y-direction,
as shown in Fig. 1, and also some examples of the potential
profiles of both modes are drawn in Fig. 1(b). In this case,
the following MSW modes can propagate depending on 6:

1) MSSW propagatesfor the magnetization perpendicular to

the wave vector of MSW (8 = 0°);

2) MSBVW, for the magnetization paralel to the wave

vector (6 = 90°);

3) MSSW/MSBVW, which propagates for the oblique mag-

netization of the YIG film (0° < 6 < 90°).

Fig. 2 shows the 8 dependence of the frequency band of the
MSSW/MSBVW. The ordinate is the normalized frequency
Q = w/yM, where w, v, and M are the angular wave fre-
quency, gyromagnetic ratio, and saturation magnetization of the
YIG, respectively, and the abscissa is the angle 6 of the direct
magnetic field. The magnitude of the applied magnetic field H
isset asyH/vM = Qy = 0.2. The lower cutoff frequency of
the MSBVW is given by /Q i (2y + cos? §) (the solid curve
in Fig. 2), and decreases with the increase of 4. The dotted line
indicates the upper cutoff frequency of the MSBVW and also
the lower cutoff frequency of the MSSW, which are equal to
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Qy(Qy + 1). The upper cutoff frequency of the MSSW is
given by

20— Qpsin20\°
\/QH(QH+1)+<COS g sin )

2cosf

(the broken curve), which also decreases, and merge into the
lower cutoff at the & = cot™! +/Qyr, which is the called the
critical angle of the MSSW.

From the configuration, a pair of Fourier transforms between
the space and wavenumber domains is defined as follows:

/ Fk)e 3t a @

f) =5 / e dy, @

It is assumed that magnetostatic approximation V. x H = J
isvalid and that the time factor is exp(jwt). The permeability
tensor of in-plane magnetized YIGsis given by

B —jk2 Jk3
B.= | Jjk2 M2 3 (3
—JjK3 U3 N

where

Ko =K cosf

K3 =K sin @

o = picos’ 8 +sin’ @

ps =(1 — p)cosfsinf

s = psin® @ + cos® @
Qg

02— Q3

Q

02 -02°

p=1-
K =

With the use of the usual boundary conditionsthat the tangen-
tial component of the magnetic field and the normal component
of magnetic flux density are continuous, we can obtain therela-
tion between the current density flowing in the metal strip J..(y)
and the magnetic flux density B,.(y) onthe z = 0-plane, inthe
wavenumber domain

Bo(k) = jpoG(k)J.(k) 4
where
G(k) = —sgﬁ:g (5)
No(k) = (ng — r2s)(pq + r2s + tanh |k|h)
— (juq + K28) (g — Kas — tanh |k|h)e~ 244 (6)
Do(k) = (ug — k2 + 1)(pg + k2 + tanh |k|h)

— (g + k2 — 1)(psg — k2 — tanh |k|h)e 24HI?
(7

and g = / 2/, s = k/|k|. Itisnoted that the function G(k)
hasapolein k > 0 and k < 0, respectively.
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Taking the inverse Fourier transform and considering that
B.(y) = 0 inthe metal strip region (—w £ y < w) lead to
the following equation:

/Oo G (e ™ dk =0, —w<y<w. (8

ade o)

This Fourier integral contains the unknown current density
J.(k), and we can solve (8) by using the integral kernel
expansion method.

B. Integral Kernel Expansion Method

First, the integral kernel of (8), ¢=7*¥, is expanded into a se-
riesof the Legendre polynomiasover theinterval —w < y S w

O

The expansion coefficients A, (k) can be determined as fol-
lows. If we now multiply both sides of the above equation by
P, (y/w), integrate over —w to w, and invoke the orthogonality
of the Legendre polynomials, we then obtain

/L: P, <%)em dy = A, /L: {Pn <%) }2 dy  (10)

by changing the variables y = wzx

eI =" Ap(k) P,

m=0

1 1
/ P (z)e " d = A, / (Pu(x)} de.  (10)
1 -1

Thenormalizationintegral of the Legendre polynomiasisequal
to 2/(2n + 1), and the left-hand side can be rewritten in terms
of the Rodrigues’ formula[13]:

[0,

Integrating n times by parts, we obtain

24, (=1 /1 "
2n+1  2nn! | dan
=" dt 1] _ikwa '
- onpl dxmt [(1_$) }e -

-1 n—1
o ]
1

P.(x)=

(12)

[(1 —a:Q)n} e~ IRwT gy

_ 4 n 1 ' .
_ ( é]nku}') / (:L,Q_l)ne—]kwa: dr
T, 1

. 7r
=(-j)"2 T r(12)(Fw)

(13)

where J,,(z) and j,(z) are the cylindrical and spherical Bessel
functions, respectively, and we used the Poisson’s integral for

the Bessel function at the last of the above arrangement [14].
Conseguently, we obtain
—iky — -2 1) jm (kw) P, g . 14
=3 e it (1) 0
Substituting (14) into (8) and invoking orthogonality of the
L egendre polynomials, we can obtain
/ GE)T (k) jm(kw)dk =0, m=0,1,.... (15)
Next, we expand the unknown function J.(y) into a series of
orthogonal polynomials with unknown coefficients

2y (/2 o
J.(y) = {1 - <%) } nz::o anTn<%>H<%> (16)
where |

o-{y

and 7,(z) is the Chebyshev polynomia and a,(n =
0, 1, ...)'sarethe unknown coefficients to be determined. The
Fourier transform of (16) is given by

T w - n
JAk) = 5 nz::O an " In (kw).
Substituting (17) into (15), we can reduce the Fourier integral
containing the unknown function into linear equations with re-
spect to the unknown coefficients

17)

Loo Loy Lo, ao
Lig Ly Lin ay
=0 (18)
Lrn,O Lrn,l Lrn,n (€29
where
Lo =" [ Gk () k(19

which can be cal culated numerically, and we can then determine
the coefficients a,,'s to obtain the current density in (16) and
(7).

The mgjor difference from the spectral-domain method [15],
[16] and the advantages of this method are the flexibility to
choose the expansion functions of both the integral kernel and
solution function, and the rapid convergence of the solution. We
can choose the expansion function of the solution taking into
account the physical condition for rapid convergence, which, as
well asthe function G(k) in (8), limits alittle the choice of the
expansion function of the integral kernel, as noted below. How-
ever, the convergence of theintegral kernel expansionisquickly
obtained, e.g., in (14) for kw = 1, the expansion converges at
m = 4, and if kw = 6, it convergesat m = 11.

It is noted that when adopting the integral kernel expansion
method, the choice of the polynomials expanding the integral
kernel is necessarily limited by the function expanding the so-
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lution because the integrals corresponding to (19) have to be
bounded for any combination of m and n. The integrand of
(19) decreases on the order of £~(3/2) so that the integrals are
bounded. If we expand theintegral kernel interms of the Cheby-
shev polynomias 7, , the expansion would be given by

oo

eIk = Jo(kw) + 2 Z (=)™ T (kw) T <%> (20)

m=1

and the resulting integrals L,,,,’s would not converge at finite
values for a particular combination of /. and n because the in-
tegrand decreases on the order of £~ 1.

C. Numerical Calculation of L,,,,

Calculation of the infinite integrals of (19) is not straight-
forward because the integrands oscillate and also have pole
singularities. In this section, we describe the techniques to
overcome these difficulties.

Consider the integral over the positive & given by

w /0 G o) () dl

_ /0 - G(i)jm(z).fn(z) dz. (21)

w

As k — +oo, the function G(k) approaches exponentially to
the constant G* as follows:

Hq — Ko

Gr=-_H—" (22)
pg— k2 +1
Thus, we separate the integral into two parts as follows:
Lt = / {G<i> - G+}jm(z)J,,,(z) dz
0 w
46" [ i) @
0
G(z/w) — G can be deformed as follows:
EN N(z)
G(5)-6"= D(2) (24)
where
N(z) = { (g + k) (g — k2 +1)
— (g — K2)(pg + K2 — 1)}
<u — kg — tanh zﬁ> e~ 2azd/w
x v (25)

(g — k2 +1)
h
D(z) =(ng — k2 + 1) <uq + Ko + tanh z E)

= (g +r2—=1) <Nq — K2 —tanh z ﬁ) P
w
(26)

It is found here that the integrand of the first term of (23)
vanishes exponentialy and the convergence of the numerical
computation can be obtained easily.
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We dtill have another difficulty, which is the pole singulari-
ties, as we mentioned before. Here, we explain how to process
them in the computation. The preliminary definitions are intro-
duced for convenience of notation as follows:

R(2) = N (2)jim(2)u(2) (27)
D'(z) = dl:liz). (28)

In order to evaluate the contribution of the polesof N (z)/D(z),
we subtract the singularities from the integrand and add the
compensating term. Letting the pole z = kyw, we have

“Re [~ [Re)  Re o (-5
[ o= {D(sz'(;;) P, }dz

A—Z4
Ry = oo (-5)
z. (2
+D'(z+) /o zZ— 24 de (29)

The compensating term, or the second term of (29), can be eval-
uated by the Cauchy principal value of the integral and half the
residue, i.e,

- eo(-222)
/ N+ g,
0

Z— 24

—pv [
0

where PV stands for the principal value of the integral, and the
second term has the minus sign because, with the loss of the
medium, the pole z, would be located below the real axisin
the complex z-plane. The principal value of the integral can be
estimated as follows:

0

Z T2t -1

Z— 24
exp | — >
N A gy ir (30)

Z— Z4

= -Fi(1)

=—1.895117816... (3D)

where Ei(¢) isthe exponentia integral function.
The second term of (23) can be calculated analytically, and
the result is given by

o m—n-+2 r n—m+1 r m+4n+2
2 2 2

Note that theresult isidentically equal to zerowhenn — m — 2
orm — n — 1 ispositive and even.

It is noted that the integration over the negative half-infinite
interval can be donein asimilar manner.

(32)

D. Derivation of Equations for Comparison Wth Experiments

We can observe the excitation of MSWs as the loss of trans-
mission lines and, in the present problem, we measure the | Sz |
of the scattering matrix of the microstrip linein Fig. 1. In this
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section, we derive the equations for the sake of comparison with
experimental data.

By using the Poynting vector, the average power flow per unit
length along with the £y-direction is given by

_27r2u0w[.];(ki)[2

Py =

kyD"2(ky)
N§ (k) 2 _oqlkeld 2
|: 2lk:|:[ + (K'l'Trnrne +K—Tpp)
1 — e—2alkx|d
qik+
2|k h tanh |k |h
+2 26 2q|ki|d{
(1) cosh? |kx|h [kex|
(33)

where the sign + representsthe +y-direction of the power flow,
respectively, and

Ky =pg + kas (34)
T, = 11g + Kos + tanh [k4|h (35)
Tom = pg — K28 — tanh [ky |h (36)
h
D'(k) = s(pg — ips +1) —o——
(k) =s(pg = 25 +1) — il

+ s(pg + rgs — 1) 2akld
+ 2gd(pg — Kos — tanh [k[h)} .
(37)

{ h
X 2
cosh” |klh

Thetotal current isobtained by integrating (16) directly over
the metd strip, i.e.,

I= /w J.(y) dy = mwag. (38)

Thus, the radiation resistance of the transducer is given by

2Py - P)
="

(39)
and the radiation reactance is obtained by taking the Hilbert

transform of the radiation resistance
OO /
X(w) = lPV/ R)

m — o

W —w

dw'.

(40)

Finally, assuming that the loss of the transmission lineis neg-
ligible, we obtain the following attenuation constant «,,;:

—wC’(wL—i—X)—i—\/{wC’(wL + X)}2+(wC’R)2
2

Matt —

(41)

wherewl = gZ and wC = 3/Z and C, L, Z, and 3 are the

line capacitance, line inductance, characteristic impedance, and
propagation constant of the transducer, respectively.

I11. NUMERICAL AND EXPERIMENTAL RESULTS

First, we calculate the insertion loss of the microstrip
transducer, which is regarded as the energy transformed into
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Fig. 3. Numerical results on the frequency dependence of |.S2.| for 8 = 0°.

The results by the present method are denoted by a solid line and those by the
conventional method are denoted by a dotted line.
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Fig. 4. Same numerical results as Fig. 3, but for the case of § = 20°.

MSSWs. Figs. 3 and 4 show the numerical results estimated by
the present method (as denoted by the solid lines) and by the
conventional ones, which are based on the following assumed
current distributions .J. ().

1) J.(y) isconstant in the strip, i.e.,

1
) = — <
LW =5- Wlsw (42)
~ 1 sinkw

and the results are denoted by dotted lines.
2) J.(y), whosefield singularities at both edges of the metal
strip are added [17], i.e,,

lyl < w (44)

J(k) = o Jolkw) (45)
with the results denoted by circles. Note that the assumed
current distribution 2 corresponds to the present method
only with the term of the zeroth order (n = 0).

These are calculated for the case of § = 0° (for which the

upper cutoff frequency of the MSSW is5.22 GHz) and # = 20°

(5.08 GHz), respectively. The parameters used in the calcula-

tionsare d = 20 pm, h = 500 um, w = 62.5 um, Hy =

77.6 KA/m, M = 141.7 kA/m, and the length of the transducer
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Fig. 5. Convergence of the numerical results.

is 8 mm. We truncate the expansion with respect to » in (17) by
ten terms and to m in (14) by twice n.

From these figures, we can observe the considerable differ-
ences between the results computed by the present method and
by both of the conventional methods over the frequencies of our
interest.

Second, we show the dependences of numerical convergence
on the number of expansion terms with frequency as a param-
eter in Fig. 5 in order to examine the convergence of computing
results because we have to truncate the expansion of (14) and
(17) by the finite terms for carrying out numerical calculation.
It is noted that n = 1 in the abscissa means the expansion of
the unknown function (16) consists of two terms (n = 0 and
1). All data are for the case of 8 = 0°. It is seen that we have
convergence with theincrease in n and we can seethat it is suf-
ficient for convergence to truncate the expansion by approxi-
mately seven terms over amost al of the frequency range, but
at the upper frequencies, the convergenceisrelatively slow. This
is because the approximate solution expanded into the finite se-
ries of the Bessel functions approaches the exact solution from
low frequencies and the terms with the Bessel functions of the
higher order contribute to it at upper frequencies. However, al-
most over the main range of the MSSW band, the convergence
is obtained by the expansion of afew terms.

Experiments were performed to verify the validity of the
present theory. Using a vector network analyzer (HP8720C),
we measured the |.S; | of the transducer or the insertion loss.

Fig. 6 shows the schema of the device-under-test. The YIG
used in this experiment is 20-pm thick, 24-mm wide, and
10-mm long. Both edges of the YIG are rough by rasping to
prevent the straight-edge resonance. We construct the metal
strip directly on the Y 1G surface by evaporating aluminum. The
dimensions of the metal strip is shown in Fig. 6(b): 1-mm-wide
and 1-mm-long parts in the both sides for transition between
SMA connectors and the transducer, and 125-;m-wide center
part for thetransducer, i.e., w = 62.5 puminFig. 1. Thedistance
between the metal strip and ground plane is approximately
500 pm, for which the characteristic impedance and effective
dielectric constant of this transmission line are approximately
208.0 © and 6.20, respectively, if the YIG isregarded just as a
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Fig. 7. Freguency dependence of S5, of the test device for various values of
the angle of the magnetic field ().

dielectric. The YIG film is directly mounted on the aluminum
ground plane, which is rotatable on the aluminum support and
can be fixed at any angles. The auminum support is fixed by
the equipment applying a direct magnetic field.

Fig. 7 shows the experimental results of the frequency de-
pendence of |S2; | of the transducer when we changed the angle
of the biased magnetic field § with a constant magnitude of
77.6 KA/m (= 975 Oe€). The frequency where the MSSW ex-
ists for # = 0° is found to range from 4.59 to 5.22 GHz, and
the corresponding frequency band for the MSBVW (6 = 90°)
propagationisinarangefrom 2.73t04.59 GHz. It isknown that
with anincreasein €, the upper limit of the MSSW band shows
a decrease and the lower limit of the MSBVW band becomes
lower [4], [7], [8], and such atendency can actually be found in
Fig. 7.

In Figs. 8-10, we plot the experimental and numerical results
by the present method for the case of & = 0°, 20°, and 30°, and
also the results by the conventional method for comparison. All
three of these figures clearly suggest that the frequency depen-
dences by the present method exhibit the behaviors much closer
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Fig. 10. SameasFig. 8, but for the case of & = 30°.

to the experimental frequency dependences than those by the
conventional analysis method.

Even though the present method has yielded considerably
better agreement with the experimental result than the previous
conventional result, we still notice a significant discrepancy
between the two, which should be seriously discussed. In the
frequency band of the MSSW, the experimental data are seen
from these figures to indicate a greater loss of approximately
1 dB than the numerical results by the present method. This
difference can be accounted for by the undesirable return loss at
the transition between the coaxial and microstrip line, radiation
into free space, and/or conductive loss of the metal strip. It is
also found from these figures that extra excitation exists out
of the MSSW band. It seems to be due to the inhomogeneity
of the applied magnetic field and the demagnetization in the
fringes of the YIG film.
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Fig. 11. Calculated frequency characteristics of the MSSW excitation
changing the ratio of strip width to YIG thickness 2w/d. The data are
calculated by the integral kernel expansion method.
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Fig.12. SameasFig. 11, but calculated by the conventional method adopting
the uniform current distribution. The parameters used for computation are the
same asin Fig. 11.

Here, we shall consider the dependence of the MSSW exci-
tation on the microstrip geometry by means of the developed
method in this study. We change the ratio of strip widthto YIG
thickness 2w/d as a parameter, while the others are fixed, as
shown in Fig. 11. The necessary values for the computation are
writteninthegraph. We can seethat, astheratio 2w/ d increases,
the excitation in the lower frequency range becomes stronger,
while the one in the higher range does weaker gradually.

We also show the calculated results by the conventional
method to use the uniform current distribution for reference in
Fig. 12. The same tendency of dependence on the ratio 2w/d
is as shown in the previous figure, but the difference from the
present method is large in the high-frequency range when the
ratioislow, i.e, the strip is narrow. In[10], it is mentioned that
the agreement between the cal culation with the uniform current
and the experiment is poor for the narrow strip. Consequently,
athough the uniform current approximation can be applicable
for wide strip transducers, it is necessary to use our developed
method for excitation analyses for narrow strip transducers.
Moreover, with taking into account that narrow strip trans-
ducers would be important for MSW devices to require broad
excitation, we can conclude that the present method would be
highly useful and should be used in the analysis.
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IV. CONCLUSION

We have presented the integral kernel expansion method,
which is an integral-equation solver, as the application to anal-
ysis of the MSSW excitation in the in-plane magnetized Y1G
film. This method allows us to formulate the present problem
elegantly and solve it successively. The agreement of the
numerical results by the present method with the corresponding
experiment is generally good, while there is still a significant
discrepancy between the conventional ones and the experiment.
It has been evident that the integral kernel expansion method
used in this paper is appropriate for the analyses of MSW
excitation problems.

REFERENCES

[1] N. Guan, K. Yashiro, and S. Ohkawa, “Integral kernel expansion method
for mixed boundary value problems in electromagnetic field theory,” J.
Fac. Eng. Chiba Univ., vol. 48, no. 1, pp. 29-38, 1996.

[2] Y.Ando, N. Guan, K. Yashiro, and S. Ohkawa, “Excitation of magneto-
static surface wave by coplanar waveguide transducers,” |EICE Trans.
Electron., vol. E81-C, no. 12, pp. 1942-1947, 1998.

[3] ——, “Excitation of magnetostatic surface waves by dot line trans-
ducers,” |EICE Trans. Electron., vol. E82-C, no. 7, pp. 1123-1128,
1999.

[4] R.W.DamonandJ. R. Eshbach, “Magnetostatic modes of aferromagnet
slab,” J. Phys. Chem. Salid, vol. 19, pp. 308-320, 1961.

[5] W. S. Ishak, “Magnetostatic wave technology: A review,” Proc. |IEEE,
vol. 76, pp. 171-187, Feb. 1988.

[6] C.S. Tsai,"Integrated acoustooptic and magnetooptic devicesfor optical
information processing,” Proc. |EEE, vol. 84, pp. 853-869, June 1996.

[7] M. J. Hurben and C. E. Patton, “Theory of magnetostatic waves for
in-plane magnetized isotropic films,” J. Magn. Magn. Mater., vol. 139,
pp. 263-291, 1995.

[8] Y.Ando, N. Guan, K. Yashiro, and S. Ohkawa, “ Effects of ametal plane
on MSSW/MSBVW modes in a YIG film,” in INTERMAG '99 Dig.,
Kyongju, Korea, Paper BE-06.

[9] A.K.Ganguly and D. C. Webb, “Microstrip excitation of magnetostatic

surfacewaves: Theory and experiment,” | EEE Trans. Microwave Theory

Tech., vol. MTT-23, pp. 998-1006, Dec. 1975.

A. K. Ganguly, D. C. Webb, and C. Banks, “Complex radiation

impedance of microstrip-excited magnetostatic-surface waves,” |EEE

Trans. Microwave Theory Tech., vol. MTT-26, pp. 444-447, June 1978.

P. R. Emtage, “Generation of magnetostatic surface waves by a mi-

crostrip,” J. Appl. Phys., vol. 53, no. 7, pp. 5122-5125, 1982.

G. A. Vuga'ter and V. N. Makhalin, “Reflection and excitation of mag-

netostatic surface waves by a metal strip,” Sov. Phys. Tech. Phys., val.

30, no. 3, pp. 296-300, 1985.

E. T. Whittaker and G. N. Watson, A Course of Modern Anal-

ysis. Cambridge, U.K.: Cambridge Univ. Press, 1965, p. 303.

G. N. Watson, A Treatise on the Theory of Bessel Func-

tions. Cambridge, U.K.: Cambridge Univ. Press, 1966, p. 48.

T. Itoh and R. Mittra, “Spectral-domain approach for calculating the

dispersion characteristics of microstrip lines,” |EEE Trans. Microwave

Theory Tech., vol. MTT-21, pp. 496-499, July 1973.

Q. Zhang and T. Itoh, “Spectral-domain analysis of scattering from

E-plane circuit elements,” |EEE Trans. Microwave Theory Tech., vol.

MTT-35, pp. 138-150, Feb. 1987.

R. E. Collin, Field Theory of Guided Waves, 2nd ed. New York: IEEE

Press, 1991, pp. 23-28.

(10

[11]

[12]

[13]
[14]

[15]

[16]

[17]

Yoshiaki Ando (M’00) was born in Tokyo, Japan, on
May 12, 1972. Hereceived the B.E., M.E., and Ph.D.
degreesin electrical and electronicsengineering from
Chiba University, Chiba, Japan, in 1995, 1997, and
2000, respectively.

Since 2000, he has been with the Department
of Electronic Engineering, The University of
Electro-Communications, Tokyo, Japan, where heis
currently a Research Associate. His research inter-
ests are MSWs and computational electromagnetics
of natural phenomena.

499

Ning Guan (M’89) was born in Hunan, China, in
1962. He received the B.S., M.S,, and Ph.D. degrees
in electrical and electronics engineering from Chiba
University, Chiba, Japan, in 1985, 1987, and 1990,
respectively.

From 1991 to 2000, he was a Research Associate
with the Department of Electronics and Mechanical
Engineering, Chiba University, where he was
involved with magnetostatic-wave devices, theory
of propagation of electromagnetic waves, and
applications of wavelet to boundary value problems
in electromagnetic theory. Since 2000, he has been with the Optics and Elec-
tronics Laboratory, Fujikura Ltd., Chiba, Japan. His current research interests
arethe analysis of optical fibers and design of planar lightwave circuits.

Ken'ichiro Yashiro (M’83) received the B.E.
and M.E. degrees in electronics engineering from
Chiba University, Chiba, Japan, in 1974 and 1976,
respectively, and the D.E. degree from the Tokyo
Ingtitute of Technology, Tokyo, Japan, in 1979.

In 1979, he joined the Department of Electrical
and Electronics Engineering, Chiba University,

. L.

b ~ where he was a Research Associate. He became
e an Associate Professor in 1987 and a Full Pro-

A‘\' \;t fessor in 1998. His research interests include
o magnetostatic-wave devices, magnetic solitons,
electromagnetic-wave scattering, and inverse scattering problems.

Sumio Ohkawa (SM’81) was born in Hokkaido,
Japan, on July 16, 1935. He received the B.Eng. de-
greein electrical engineering from Chiba University,
Chiba, Japan, in 1961, and the D.Eng. degree from
the Tokyo Institute of Technology, Tokyo, Japan, in
1974.

He then joined the Department of Electrical Engi-
neering, Chiba University, as an Associate Professor,
and in 1978, became a Full Professor. From October
1979 to July 1980, he was a Visiting Professor with
the Microwave Research Institute, Polytechnic Insti-
tute of New York. In 2001, he was appointed Professor Emeritus with Chiba
University. His research has mainly concerned measurements of materials in
the microwave range. He is currently also interested in applications of magne-
tostatic-wave devices and magnetostatic-wave envel ope solitons.

Masashi Hayakawa received the B.E., M.E., and
D.Eng. degrees from Nagoya University, Nagoya,
Japan, in 1966, 1968, and 1974, respectively.

In 1970, he joined the Research Ingtitute of
Atmospherics, Nagoya University, as a Research
Associate. In 1968, he became an Assistant
Professor, and in 1969, he became an Associate
Professor. Since 1991, he has been a Professor
with The University of Electro-Communications,
Tokyo, Japan. He is Co-Editor of Radio Science. His
interests include space plasma waves, atmospheric
electricity, seismo-electromagnetics, electromagnetic compatibility (EMC),
and inversion problems.

Dr. Hayakawais a member of the America Geophysical Union, International
Scientific Radio Union (URSI), Ingtitute of Electrical, Information and Commu-
nication Engineers (IEICE), Japan, the Institute of Electronics Engineers Japan,
the Society of Atmospheric Electricity of Japan, and the Society of Geomag-
netism and Earth, Planetary and Space Sciences. He was the URSI Commission
E chair (1996-1999). Heiscurrently the President of the Society of Atmospheric
Electricity of Japan. He is on the Technical Program Committee of the Zurich
EMC Symposium and also on the Scientific Program Committee of Wroclaw
EMC Conference.



	MTT025
	Return to Contents


